

POPULAR ARTICLE

Artificial intelligence in agriculture

R. K. Yelutala

ICAR- Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad- 500 030 Telangana, India

Corresponding authors email: rohanyelutala2000@gmail.com

Manuscript received: March 1, 2025; Decision on manuscript, March 7, 2024; Manuscript accepted: March 15, 2025

Artificial Intelligence (AI) in agriculture uses data from sensors, drones, and satellites to enable precision farming, helping farmers optimize resources, predict issues, and increase yields through smart irrigation, pest detection, automated machinery (robots/drones), and predictive analytics for planting/harvesting, ultimately boosting sustainability and food security by reducing waste and chemical use.

Key applications of AI in agriculture

Precision farming: AI analyzes data to provide tailored advice on water, fertilizer, and pesticide application, optimizing resource use.

Crop and soil monitoring: Drones and sensors collect images and data to assess soil health, detect diseases, pests, or nutrient deficiencies in real-time.

Predictive analytics: AI forecasts weather, market trends, and optimal planting/harvesting times, reducing risks.

Smart automation: AI-powered robots perform tasks like targeted spraying and autonomous weeding, addressing labor shortages and improving precision.

Disease and pest management: Computer vision identifies issues quickly, allowing for early, precise intervention, reducing chemical reliance.

Yield optimization: AI-driven systems manage irrigation, feeding, and environmental controls (like in greenhouses) for better outcomes.

Supply chain and market: AI helps predict demand, stabilizing prices and reducing spoilage.

Benefits and challenges

Increased efficiency: Optimized resource use (water, fertilizer) and higher yields.

Sustainability: Reduced chemical runoff and water waste, lower environmental impact.

Resilience: Early warnings for climate risks like drought or floods.

Accessibility: Mobile apps offer AI insights even in areas with poor connectivity.

Connectivity and infrastructure: Especially in remote areas.

Cost and training: Need for investment and farmer education.

Data privacy: Managing vast amounts of farm data.

AI in agriculture uses technologies like machine learning and computer vision for precision farming, disease detection, automated machinery (drones, robots), predictive analytics (yield, weather), livestock monitoring, and supply chain optimization, transforming tasks from soil analysis to harvest to improve efficiency, sustainability, and yield. Key applications include AI-powered apps like smart Plantix for pest/nutrient diagnosis, irrigation systems, and AI robots for tasks like milking cows or weeding, all generating data for better farm management.

Key applications of AI in Agriculture

Application area	How AI is used	Benefits
Precision Farming	Analyzes sensor/satellite data for targeted irrigation, fertilization, & pest control.	Optimizes resource use, reduces waste, boosts yield.
Crop Monitoring and Disease Detection	Image recognition (drones, phones) identifies pests, diseases, nutrient deficiencies early.	Early intervention, minimizes crop loss, reduces chemical use.
Autonomous Equipment	AI-powered robots/drones for planting, spraying, harvesting, weeding.	Reduces labor, increases efficiency, precise application.
Predictive Analytics	Forecasts weather, yield, and market trends.	Proactive decision-making, risk management.
Livestock Management	Monitors animal health, feeding, and behavior via sensors/cameras.	Early disease detection, improved animal welfare.
Soil Management	Analyzes soil data for optimal nutrient/water management.	Healthier soil, better crop productivity.
Supply Chain	Optimizes logistics, tracks produce, reduces spoilage.	Better farm-to-table flow, less food waste.